量子论和现代科技的关系,量子理论有什么作用?

用户投稿 129 0

关于量子论和现代科技的问题,小编就整理了2个相关介绍量子论和现代科技的解答,让我们一起看看吧。

量子理论有什么作用?

量子物理实际上包含两个方面.一个是原子层次的物质理论:量子力学;正是它我们才能理解和操纵物质世界.另一个是量子场论,它在科学中起到一个完全不同的作用.量子:某些物理;量不能连续而只能以某一最小单位的整数倍发生变化,这个最小单位叫做各该量的量子.量子力学:研究微观离子运动规律.微观粒子有明显的波粒二象性(波动性,粒子性》,其运动规律是研究宏观物体运动规律的理论不能解决的.量子力学是近代理论物理的基础之一.在量子力学研究的基础上人们发展了半导体,原子能和激光等现代技术.

量子力学是现代物理的基础,没有量子力学,现代科学就不能发展,我们就没有现代的光电子设备以及互联网这些便利的生活了。而物理学是走向技术的第一步,没有量子力学的进步,其他的现代科学例如化学,生物的发展也都会停滞。

量子力学的发展中,无数先驱通过他们杰出的洞察力,无以伦比的想象力,解开了物质微观世界的本相。从而我们打破了原子不可分的经典理论,进入到了电子,和原子核,进而进入到核物理学,研究基本粒子之间的作用与转变。通过量子力学,人们了解到电子的运行规律,发展起来了一系列的全新研究领域,从固体物理,金属物理,到半导体物理,以及其他极端的高压物理,低温物理,超导物理,这些都是建立在量子力学理论基础之上。

量子论的应用?

量子力学最大的影响是半导体芯片。如果没有量子力学的发展,就没有半导体芯片的发明。半导体物理和现代的半导体电子工业,主要以量子力学为基础的固体电子理论和能带理论,来研究半导体的能带结构,掺杂以及杂质对能带的影响,电子在外加电磁场下的输运过程,金属或者不同半导体接触后的作用机理,从而应用于各种半导体器件的制造原理和工艺。其他各种光电器件,这些都是量子力学理论在光电转换方面的具体应用。

现在物理的基础研究,都脱离不了量子力学的理论基础,其他例如量子化学,分子生物学,也都是量子力学理论在跨学科中的应用。目前基于量子力学原理,一些新的量子信息学应用例如量子通信,量子计算机还在实验室阶段进行,目前处于原型开发阶段,离实际应用还有较远距离。但是如果有一天能够利用这些量子效应,一定会带来更多的生活便利和技术进步。

量子论是现代物理学的两大基石之一。量子论提供了新的关于自然界的观察、思考和表述方法。量子论揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学、粒子物理学以及现代信息技术奠定了理论基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射,粒子的无限可分和信息携带等。尤其它的开放性和不确定性,启发人类更多的发现和创造。

尽管人们对量子理论的含义还不太清楚,但它在实践中获得的成就却是令人吃惊的。尤其在凝聚态物质--固态和液态的科学研究中更为明显。用量子理论来解释原子如何键合成分子,以此来理解物质的这些状态是再基本不过的。键合不仅是形成石墨和氮气等一般化合物的主要原因,而且也是形成许多金属和宝石的对称性晶体结构的主要原因。用量子理论来研究这些晶体,可以解释很多现象,例如为什么银是电和热的良导体却不透光,金刚石不是电和热的良导体却透光?而实际中更为重要的是量子理论很好地解释了处于导体和绝缘体之间的半导体的原理,为晶体管的出现奠定了基础。

量子论在工业领域的应用前景也十分美好。科学家认为,量子力学理论将对电子工业产生重大影响,是物理学一个尚未开发而又具有广阔前景的新领域。时下半导体的微型化已接近极限,如果再小下去,微电子技术的理论就会显得无能为力,必须依靠量子结构理论。科学家们预言,利用量子力学理论,到2010年左右,人们能够使蚀刻在半导体上的线条的宽度小到十分之一微米(一微米等于千分之一毫米)以下。在这样窄小的电路中穿行的电信号将只是少数几个电子,增加一个或减少一个电子都会造成很大的差异。

美国威斯康星大学材料科学家马克斯·拉加利等人根据量子力学理论已制造了一些可容纳单个电子的被称为"量子点"的微小结构。这种量子点非常微小,一个针尖上可容纳几十亿个。研究人员用量子点制造可由单个电子的运动来控制开和关状态的晶体管。他们还通过对量子点进行巧妙的排列,使这种排列有可能用作微小而功率强大的计算机的心脏。此外,美国得克萨斯仪器公司、国际商用机器公司、惠普公司和摩托罗拉公司等都对这种由一个个分子组成的微小结构感兴趣,支持对这一领域的研究,并认为这一领域所取得的进展"必定会获得极大的回报"。

科学家对量子结构的研究的主要目标是要控制非常小的电子群的运动即通过"量子约束"以使其不与量子效应冲突。量子点就有可能实现这个目标。量子点由直径小于20纳米的一团团物质构成,或者约相当于60个硅原子排成一串的长度。利用这种量子约束的方法,人们有可能制造用于很多光盘播放机中的小而高效的激光器。这种量子阱激光器由两层其他材料夹着一层超薄的半导体材料制成。处在中间的电子被圈在一个量子平原上,电子只能在两维空间中移动。这样向电子注入能量就变得容易些,结果就是用较少的能量就能使电子产生较多的激光。

美国电话电报公司贝尔实验室的研究人员正在对量子进行更深入的研究。他们设法把量子平原减少一维,制造以量子线为基础的激光器,这种激光器可以大大减少通信线路上所需要的中继器。

美国南卡罗来纳大学詹姆斯·图尔斯的化学实验室用单个有机分子已制成量子结构。采用他们的方法可使人们将数以十亿计分子大小的装置挤在一平方毫米的面积上。一平方毫米可容纳的晶体管数可能是时下的个人计算机晶体管数的1万倍。纽约州立大学的物理学家康斯坦丁·利哈廖夫已用量子存储点制成了一个存储芯片模型。从理论上讲,他的设计可把1万亿比特的数据存储在大约与现今使用的芯片大小相当的芯片上,而容量是时下芯片储量的1·5万倍。有很多研究小组已制出了利哈廖夫模型装置所必需的单电子晶体管,有的还制成了在室温条件下工作的单电子晶体管。科学家们认为,电子工业在应用量子力学理论方面还有很多问题有待解决。因此大多数科学家正在努力研究全新的方法,而不是仿照时下的计算机设计量子装置。

到此,以上就是小编对于量子论和现代科技的问题就介绍到这了,希望介绍量子论和现代科技的2点解答对大家有用。

抱歉,评论功能暂时关闭!